Introduction to Differential Geometry

Introduction to Differential Geometry

PDF Introduction to Differential Geometry Download

  • Author: Joel W. Robbin
  • Publisher: Springer Nature
  • ISBN: 3662643405
  • Category : Mathematics
  • Languages : en
  • Pages : 426

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.


Differential Geometry and Its Applications

Differential Geometry and Its Applications

PDF Differential Geometry and Its Applications Download

  • Author: John Oprea
  • Publisher: MAA
  • ISBN: 9780883857489
  • Category : Mathematics
  • Languages : en
  • Pages : 508

This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.


Applied Differential Geometry

Applied Differential Geometry

PDF Applied Differential Geometry Download

  • Author: William L. Burke
  • Publisher: Cambridge University Press
  • ISBN: 9780521269292
  • Category : Mathematics
  • Languages : en
  • Pages : 440

This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.


Differential Geometry

Differential Geometry

PDF Differential Geometry Download

  • Author: Loring W. Tu
  • Publisher: Springer
  • ISBN: 3319550845
  • Category : Mathematics
  • Languages : en
  • Pages : 358

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.


A Course in Differential Geometry

A Course in Differential Geometry

PDF A Course in Differential Geometry Download

  • Author: Thierry Aubin
  • Publisher: American Mathematical Soc.
  • ISBN: 082182709X
  • Category : Mathematics
  • Languages : en
  • Pages : 198

This textbook for second-year graduate students is intended as an introduction to differential geometry with principal emphasis on Riemannian geometry. Chapter I explains basic definitions and gives the proofs of the important theorems of Whitney and Sard. Chapter II deals with vector fields and differential forms. Chapter III addresses integration of vector fields and p-plane fields. Chapter IV develops the notion of connection on a Riemannian manifold considered as a means to define parallel transport on the manifold. The author also discusses related notions of torsion and curvature, and gives a working knowledge of the covariant derivative. Chapter V specializes on Riemannian manifolds by deducing global properties from local properties of curvature, the final goal being to determine the manifold completely. Chapter VI explores some problems in PDEs suggested by the geometry of manifolds. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.


Manifolds and Differential Geometry

Manifolds and Differential Geometry

PDF Manifolds and Differential Geometry Download

  • Author: Jeffrey Marc Lee
  • Publisher: American Mathematical Soc.
  • ISBN: 0821848151
  • Category : Mathematics
  • Languages : en
  • Pages : 690

Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.


Differential Geometry

Differential Geometry

PDF Differential Geometry Download

  • Author: Erwin Kreyszig
  • Publisher: Courier Corporation
  • ISBN: 0486318621
  • Category : Mathematics
  • Languages : en
  • Pages : 384

An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.


An Introduction to Differential Geometry

An Introduction to Differential Geometry

PDF An Introduction to Differential Geometry Download

  • Author: T. J. Willmore
  • Publisher: Courier Corporation
  • ISBN: 0486282104
  • Category : Mathematics
  • Languages : en
  • Pages : 338

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.


Differential Geometry

Differential Geometry

PDF Differential Geometry Download

  • Author: Clifford Taubes
  • Publisher: Oxford University Press
  • ISBN: 0199605882
  • Category : Mathematics
  • Languages : en
  • Pages : 313

Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry.


Differential Geometry

Differential Geometry

PDF Differential Geometry Download

  • Author: Wolfgang Kühnel
  • Publisher: American Mathematical Soc.
  • ISBN: 0821839888
  • Category : Mathematics
  • Languages : en
  • Pages : 394

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.