Embedded Systems Fundamentals with Arm Cortex M Based Microcontrollers

Embedded Systems Fundamentals with Arm Cortex M Based Microcontrollers : A Practical Approach

Microcontrollers are embedded into larger systems to provide benefits such as better performance, more features, better efficiency, lower costs and better dependability. This textbook introduces students to creating microcontroller-based embedded systems featuring an ARM Cortex-M CPU core.

Chapter 1 introduces students to the concepts of MCU-based embedded systems, and how they differ from general-purpose computers. It then introduces the ARM Cortex-M0+ CPU, the Kinetis KL25Z MCU, and the low cost FRDM-KL25Z MCU development board.

Chapter 2 presents the general purpose I/O peripheral to provide an early, hands-on experience with reading switches and lighting LEDs using C code. It also introduces the CMSIS hardware abstraction layer, which simplifies software access to peripherals.

Chapter 3 introduces multitasking on the CPU, with the goals of improving responsiveness and software modularity while reducing CPU overhead. The interplay of interrupts, peripherals and schedulers (both cooperative and preemptive) is examined.

Chapter 4 presents the ARM Cortex-M0+ processor core, including organization, registers, memory, and instruction set. It then discusses interrupts and exceptions, including CPU response and hardware configuration. Designing software for a system with interrupts is discussed, including program design (including partitioning work), interrupt configuration, writing handlers in C, and sharing data safely given preemption.

Chapter 5 first gives an overview of tool-chain which translates a program from C source code to executable object code. It then shows side-by-side the source code and the object code the tool-chain has generated to implement it. Topics covered include functions, arguments, return values, activation records, exception handlers, control flow constructs for loops and selection, memory allocation and use, and accessing data in memory.

Chapter 6 presents analog interfacing, starting with theory and ending with practical implementations. Quantization and sampling are presented as a foundation for digital to analog conversion, and analog to digital conversion. The DAC, ADC and analog comparator peripherals are presented and used.

Chapter 7 presents timer peripherals and their use for generating a periodic interrupt or a pulse-width modulated signal, or for measuring elapsed time or a signal's frequency. Watchdog timers, used to detect and reset an out-of-control program, are also discussed. The SysTick, PIT, TPM and COP timers are examined.

Chapter 8 discusses serial communications, starting with the fundamentals of data serialization, framing, error detection, media access control and addressing. Software queues are introduced to show how to buffer data between communication ISRs and other parts of the program. Three protocols and their supporting peripherals are investigated next: SPI, asynchronous serial (UART) and I2C. UART communication is demonstrated using the FRDM-KL25Z's debug MCU as a serial port bridge over USB to the PC. I2C communication is demonstrated using the FRDM-KL25Z's built-in 3 axis accelerometer with I2C interface.

Chapter 9 introduces the direct memory access peripheral and its ability to transfer data autonomously, offloading work from the CPU and offering dramatically improved performance. Examples include using DMA for bulk data copying, and for DAC-based analog waveform generation with precise timing.

An appendix covers how to measure the power and energy use on the FRDM-KL25Z board, including disconnecting the debug MCU to reduce power. Energy measurement using an ultracapacitor is also presented.

For use in ECE, EE, and CS departments.

  • Format: Paperback | 300 pages
  • Dimensions: 188.98 x 246.13 x 16.76mm | 566.99g
  • Publication date: 28 Mar 2017
  • Publisher: ARM Education Media
  • Publication City/Country: Cambridge, United Kingdom
  • Language: English
  • Illustrations note: 275 tables, charts and images
  • ISBN10: 1911531034
  • ISBN13: 9781911531036
  • Bestsellers rank: 479,259

More Books:

Embedded Systems Fundamentals with ARM Cortex-M Based Microcontrollers
Language: en
Pages:
Authors: Alexander G. Dean
Categories:
Type: BOOK - Published: 2017 - Publisher:

Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Language and C: Third Edition
Language: en
Pages: 736
Authors: Yifeng Zhu
Categories: Computers
Type: BOOK - Published: 2017-07 - Publisher:

This book introduces basic programming of ARM Cortex chips in assembly language and the fundamentals of embedded system design. It presents data representations
Fundamentals of System-on-Chip Design on Arm Cortex-M Microcontrollers
Language: en
Pages: 660
Authors: René Beuchat
Categories:
Type: BOOK - Published: 2021-08-02 - Publisher: Arm Education Media

This textbook aims to provide learners with an understanding of embedded systems built around Arm Cortex-M processor cores, a popular CPU architecture often use
Digital Signal Processing Using Arm Cortex-M Based Microcontrollers
Language: en
Pages: 354
Authors: Cem Ünsalan
Categories:
Type: BOOK - Published: 2018-12-12 - Publisher: Arm Education Media

This textbook introduces readers to digital signal processing fundamentals using Arm Cortex-M based microcontrollers as demonstrator platforms. It covers founda
The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors
Language: en
Pages: 1055
Authors: Joseph Yiu
Categories: Computers
Type: BOOK - Published: 2013-10-06 - Publisher: Newnes

This new edition has been fully revised and updated to include extensive information on the ARM Cortex-M4 processor, providing a complete up-to-date guide to bo
Embedded System Design with ARM Cortex-M Microcontrollers
Language: en
Pages: 576
Authors: Cem Ünsalan
Categories: Technology & Engineering
Type: BOOK - Published: 2022-01-03 - Publisher: Springer Nature

This textbook introduces basic and advanced embedded system topics through Arm Cortex M microcontrollers, covering programmable microcontroller usage starting f
System-on-Chip Design with Arm® Cortex®-M Processors
Language: en
Pages: 334
Authors: Joseph Yiu
Categories: Computers
Type: BOOK - Published: 2019-08-29 - Publisher: Arm Education Media

The Arm(R) Cortex(R)-M processors are already one of the most popular choices for loT and embedded applications. With Arm Flexible Access and DesignStart(TM), a
Embedded Digital Control with Microcontrollers
Language: en
Pages: 370
Authors: Cem Unsalan
Categories: Science
Type: BOOK - Published: 2021-04-06 - Publisher: John Wiley & Sons

EMBEDDED DIGITAL CONTROL WITH MICROCONTROLLERS Explore a concise and practical introduction to implementation methods and the theory of digital control systems
The Definitive Guide to the ARM Cortex-M3
Language: en
Pages: 481
Authors: Joseph Yiu
Categories: Technology & Engineering
Type: BOOK - Published: 2009-11-19 - Publisher: Newnes

This user's guide does far more than simply outline the ARM Cortex-M3 CPU features; it explains step-by-step how to program and implement the processor in real-
Making Embedded Systems
Language: en
Pages: 329
Authors: Elecia White
Categories: Computers
Type: BOOK - Published: 2011-10-25 - Publisher: "O'Reilly Media, Inc."

Interested in developing embedded systems? Since they donâ??t tolerate inefficiency, these systems require a disciplined approach to programming. This easy-to-