PDF Structure and Interpretation of Signals and Systems Download
- Author: Edward A. Lee
- Publisher: Lee & Seshia
- ISBN: 0578077191
- Category : Signal processing
- Languages : en
- Pages : 740
eBook downloads, eBook resources & eBook authors
Signals and Systems Using MATLAB, Fourth Edition features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications, and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more worked examples and a variety of new end-of-chapter problems, suggestions for labs, and more explanation of MATLAB code. - Introduces both continuous and discrete systems early and then studies each separately more in-depth - Contains an extensive set of worked examples and homework assignments with applications to controls, communications, and signal processing - Begins with a review of all the background math necessary to study the subject - Includes MATLAB® problems and applications in every chapter
This new textbook in signals and systems provides a pedagogically rich approach to what can commonly be a mathematically dry subject. With features like historical notes, highlighted common mistakes, and applications in controls, communications, and signal processing, Chaparro helps students appreciate the usefulness of the techniques described in the book. Each chapter contains a section with MatLab applications. - Pedagogically rich introduction to signals and systems using historical notes, pointing out "common mistakes", and relating concepts to realistic examples throughout to motivate learning the material - Introduces both continuous and discrete systems early, then studies each (separately) in more depth later - Extensive set of worked examples and homework assignments, with applications to controls, communications, and signal processing throughout - Provides review of all the background math necessary to study the subject - MatLab applications in every chapter
This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
Signals and Systems Using MATLAB, Third Edition, features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more end-of-chapter problems, new content on two-dimensional signal processing, and discussions on the state-of-the-art in signal processing. - Introduces both continuous and discrete systems early, then studies each (separately) in-depth - Contains an extensive set of worked examples and homework assignments, with applications for controls, communications, and signal processing - Begins with a review on all the background math necessary to study the subject - Includes MATLAB® applications in every chapter
If you understand basic mathematics and know how to program with Python, you’re ready to dive into signal processing. While most resources start with theory to teach this complex subject, this practical book introduces techniques by showing you how they’re applied in the real world. In the first chapter alone, you’ll be able to decompose a sound into its harmonics, modify the harmonics, and generate new sounds. Author Allen Downey explains techniques such as spectral decomposition, filtering, convolution, and the Fast Fourier Transform. This book also provides exercises and code examples to help you understand the material. You’ll explore: Periodic signals and their spectrums Harmonic structure of simple waveforms Chirps and other sounds whose spectrum changes over time Noise signals and natural sources of noise The autocorrelation function for estimating pitch The discrete cosine transform (DCT) for compression The Fast Fourier Transform for spectral analysis Relating operations in time to filters in the frequency domain Linear time-invariant (LTI) system theory Amplitude modulation (AM) used in radio Other books in this series include Think Stats and Think Bayes, also by Allen Downey.
Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670
An accessible undergraduate textbook introducing key fundamental principles behind modern communication systems, supported by exercises, software problems and lab exercises.
Digital signal processing (DSP) covers a wide range of applications in which the implementation of high-performance systems to meet stringent requirements and performance constraints is receiving increasing attention both in the industrial and academic contexts. Conceived to be available to a wide audience, the aim of this book is to provide students, researchers, engineers and the industrial community with a guide to the latest advances in emerging issues in the design and implementation of DSP systems for application-specific circuits and programmable devices. The book is divided into different sections including real-time audio applications, optical signal processing, image and video processing and advanced architectures and implementations. It will enable early-stage researchers and developers to deal with the important gap in knowledge in the transition from algorithm specification to the design of architectures for VLSI implementations.