Redefining Geometrical Exactness

Redefining Geometrical Exactness

PDF Redefining Geometrical Exactness Download

  • Author: Henk J.M. Bos
  • Publisher: Springer Science & Business Media
  • ISBN: 1461300878
  • Category : Mathematics
  • Languages : en
  • Pages : 472

In his "Géométrie" of 1637 Descartes achieved a monumental innovation of mathematical techniques by introducing what is now called analytic geometry. Yet the key question of the book was foundational rather than technical: When are geometrical objects known with such clarity and distinctness as befits the exact science of geometry? Classically, the answer was sought in procedures of geometrical construction, in particular by ruler and compass, but the introduction of new algebraic techniques made these procedures insufficient. In this detailed study, spanning essentially the period from the first printed edition of Pappus' "Collection" (1588, in Latin translation) and Descartes' death in 1650, Bos explores the current ideas about construction and geometrical exactness, noting that by the time Descartes entered the field the incursion of algebraic techniques, combined with an increasing uncertainty about the proper means of geometrical problem solving, had produced a certain impasse. He then analyses how Descartes transformed geometry by a redefinition of exactness and by a demarcation of geometry's proper subject and procedures in such a way as to incorporate the use of algebraic methods without destroying the true nature of geometry. Although mathematicians later essentially discarded Descartes' methodological convictions, his influence was profound and pervasive. Bos' insistence on the foundational aspects of the "Géométrie" provides new insights both in the genesis of Descartes' masterpiece and in its significance for the development of the conceptions of mathematical exactness.


The Geometry of an Art

The Geometry of an Art

PDF The Geometry of an Art Download

  • Author: Kirsti Andersen
  • Publisher: Springer Science & Business Media
  • ISBN: 0387489460
  • Category : Mathematics
  • Languages : en
  • Pages : 837

This review of literature on perspective constructions from the Renaissance through the 18th century covers 175 authors, emphasizing Peiro della Francesca, Guidobaldo del Monte, Simon Stevin, Brook Taylor, and Johann Heinrich. It treats such topics as the various methods of constructing perspective, the development of theories underlying the constructions, and the communication between mathematicians and artisans in these developments.


Control Theory from the Geometric Viewpoint

Control Theory from the Geometric Viewpoint

PDF Control Theory from the Geometric Viewpoint Download

  • Author: Andrei A. Agrachev
  • Publisher: Springer Science & Business Media
  • ISBN: 9783540210191
  • Category : Language Arts & Disciplines
  • Languages : en
  • Pages : 440

This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.


Projective Duality and Homogeneous Spaces

Projective Duality and Homogeneous Spaces

PDF Projective Duality and Homogeneous Spaces Download

  • Author: Evgueni A. Tevelev
  • Publisher: Springer Science & Business Media
  • ISBN: 3540269576
  • Category : Mathematics
  • Languages : en
  • Pages : 257

Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.


Geometry III

Geometry III

PDF Geometry III Download

  • Author: Yu.D. Burago
  • Publisher: Springer Science & Business Media
  • ISBN: 3662027518
  • Category : Mathematics
  • Languages : en
  • Pages : 263

A volume devoted to the extremely clear and intrinsically beautiful theory of two-dimensional surfaces in Euclidean spaces. The main focus is on the connection between the theory of embedded surfaces and two-dimensional Riemannian geometry, and the influence of properties of intrinsic metrics on the geometry of surfaces.


Joseph Liouville 1809–1882

Joseph Liouville 1809–1882

PDF Joseph Liouville 1809–1882 Download

  • Author: Jesper Lützen
  • Publisher: Springer Science & Business Media
  • ISBN: 1461209897
  • Category : Mathematics
  • Languages : en
  • Pages : 893

This scientific biography of the mathematician Joseph Liouville is divided into two parts. The first part is a chronological account of Liouville's career including a description of the institutions he worked in, his relations with his teachers, colleagues and students, and the historical context of his works. It portrays the French scientific community in a period when Germany and England had surpassed France as the leading nations in mathematics and physics. The second part of the book gives a detailed analysis of Liouville's major contributions to mathematics and mechanics. The gradual development of Liouville's ideas, as reflected in his publications and notebooks, are related to the works of his predecessors and his contemporaries as well as to later developments in the field. On the basis of Liouville's unpublished notes the book reconstructs Liouville's hitherto unknown theories of stability of rotating masses of fluid, potential theory, Galois theory and electrodynamics. It also incorporates valuable added information from Liouville's notes regarding his works on differentiation of arbitrary order, integration in finite terms, Sturm-Liouville theory, transcendental numbers, doubly periodic functions, geometry and mechanics.


A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

PDF A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935 Download

  • Author: Anders Hald
  • Publisher: Springer Science & Business Media
  • ISBN: 0387464093
  • Category : Mathematics
  • Languages : en
  • Pages : 221

This book offers a detailed history of parametric statistical inference. Covering the period between James Bernoulli and R.A. Fisher, it examines: binomial statistical inference; statistical inference by inverse probability; the central limit theorem and linear minimum variance estimation by Laplace and Gauss; error theory, skew distributions, correlation, sampling distributions; and the Fisherian Revolution. Lively biographical sketches of many of the main characters are featured throughout, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. Also examined are the roles played by DeMoivre, James Bernoulli, and Lagrange.


Isaac Newton on Mathematical Certainty and Method

Isaac Newton on Mathematical Certainty and Method

PDF Isaac Newton on Mathematical Certainty and Method Download

  • Author: Niccolo Guicciardini
  • Publisher: MIT Press
  • ISBN: 0262291657
  • Category : Mathematics
  • Languages : en
  • Pages : 449

An analysis of Newton's mathematical work, from early discoveries to mature reflections, and a discussion of Newton's views on the role and nature of mathematics. Historians of mathematics have devoted considerable attention to Isaac Newton's work on algebra, series, fluxions, quadratures, and geometry. In Isaac Newton on Mathematical Certainty and Method, Niccolò Guicciardini examines a critical aspect of Newton's work that has not been tightly connected to Newton's actual practice: his philosophy of mathematics. Newton aimed to inject certainty into natural philosophy by deploying mathematical reasoning (titling his main work The Mathematical Principles of Natural Philosophy most probably to highlight a stark contrast to Descartes's Principles of Philosophy). To that end he paid concerted attention to method, particularly in relation to the issue of certainty, participating in contemporary debates on the subject and elaborating his own answers. Guicciardini shows how Newton carefully positioned himself against two giants in the “common” and “new” analysis, Descartes and Leibniz. Although his work was in many ways disconnected from the traditions of Greek geometry, Newton portrayed himself as antiquity's legitimate heir, thereby distancing himself from the moderns. Guicciardini reconstructs Newton's own method by extracting it from his concrete practice and not solely by examining his broader statements about such matters. He examines the full range of Newton's works, from his early treatises on series and fluxions to the late writings, which were produced in direct opposition to Leibniz. The complex interactions between Newton's understanding of method and his mathematical work then reveal themselves through Guicciardini's careful analysis of selected examples. Isaac Newton on Mathematical Certainty and Method uncovers what mathematics was for Newton, and what being a mathematician meant to him.


Classical and Modern Methods in Summability

Classical and Modern Methods in Summability

PDF Classical and Modern Methods in Summability Download

  • Author: Johann Boos
  • Publisher: Clarendon Press
  • ISBN: 9780198501657
  • Category : Mathematics
  • Languages : en
  • Pages : 616

Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.


Leibniz and the Structure of Sciences

Leibniz and the Structure of Sciences

PDF Leibniz and the Structure of Sciences Download

  • Author: Vincenzo De Risi
  • Publisher: Springer Nature
  • ISBN: 3030255727
  • Category : Science
  • Languages : en
  • Pages : 304

The book offers a collection of essays on various aspects of Leibniz’s scientific thought, written by historians of science and world-leading experts on Leibniz. The essays deal with a vast array of topics on the exact sciences: Leibniz’s logic, mereology, the notion of infinity and cardinality, the foundations of geometry, the theory of curves and differential geometry, and finally dynamics and general epistemology. Several chapters attempt a reading of Leibniz’s scientific works through modern mathematical tools, and compare Leibniz’s results in these fields with 19th- and 20th-Century conceptions of them. All of them have special care in framing Leibniz’s work in historical context, and sometimes offer wider historical perspectives that go much beyond Leibniz’s researches. A special emphasis is given to effective mathematical practice rather than purely epistemological thought. The book is addressed to all scholars of the exact sciences who have an interest in historical research and Leibniz in particular, and may be useful to historians of mathematics, physics, and epistemology, mathematicians with historical interests, and philosophers of science at large.