Processing, second edition

Processing, second edition

PDF Processing, second edition Download

  • Author: Casey Reas
  • Publisher: MIT Press
  • ISBN: 026202828X
  • Category : Computers
  • Languages : en
  • Pages : 663

The new edition of an introduction to computer programming within the context of the visual arts, using the open-source programming language Processing; thoroughly updated throughout. The visual arts are rapidly changing as media moves into the web, mobile devices, and architecture. When designers and artists learn the basics of writing software, they develop a new form of literacy that enables them to create new media for the present, and to imagine future media that are beyond the capacities of current software tools. This book introduces this new literacy by teaching computer programming within the context of the visual arts. It offers a comprehensive reference and text for Processing (www.processing.org), an open-source programming language that can be used by students, artists, designers, architects, researchers, and anyone who wants to program images, animation, and interactivity. Written by Processing's cofounders, the book offers a definitive reference for students and professionals. Tutorial chapters make up the bulk of the book; advanced professional projects from such domains as animation, performance, and installation are discussed in interviews with their creators. This second edition has been thoroughly updated. It is the first book to offer in-depth coverage of Processing 2.0 and 3.0, and all examples have been updated for the new syntax. Every chapter has been revised, and new chapters introduce new ways to work with data and geometry. New “synthesis” chapters offer discussion and worked examples of such topics as sketching with code, modularity, and algorithms. New interviews have been added that cover a wider range of projects. “Extension” chapters are now offered online so they can be updated to keep pace with technological developments in such fields as computer vision and electronics. Interviews SUE.C, Larry Cuba, Mark Hansen, Lynn Hershman Leeson, Jürg Lehni, LettError, Golan Levin and Zachary Lieberman, Benjamin Maus, Manfred Mohr, Ash Nehru, Josh On, Bob Sabiston, Jennifer Steinkamp, Jared Tarbell, Steph Thirion, Robert Winter


Learning Processing

Learning Processing

PDF Learning Processing Download

  • Author: Daniel Shiffman
  • Publisher: Newnes
  • ISBN: 0123947928
  • Category : Computers
  • Languages : en
  • Pages : 566

Learning Processing, Second Edition, is a friendly start-up guide to Processing, a free, open-source alternative to expensive software and daunting programming languages. Requiring no previous experience, this book is for the true programming beginner. It teaches the basic building blocks of programming needed to create cutting-edge graphics applications including interactive art, live video processing, and data visualization. Step-by-step examples, thorough explanations, hands-on exercises, and sample code, supports your learning curve.A unique lab-style manual, the book gives graphic and web designers, artists, and illustrators of all stripes a jumpstart on working with the Processing programming environment by providing instruction on the basic principles of the language, followed by careful explanations of select advanced techniques. The book has been developed with a supportive learning experience at its core. From algorithms and data mining to rendering and debugging, it teaches object-oriented programming from the ground up within the fascinating context of interactive visual media.This book is ideal for graphic designers and visual artists without programming background who want to learn programming. It will also appeal to students taking college and graduate courses in interactive media or visual computing, and for self-study. - A friendly start-up guide to Processing, a free, open-source alternative to expensive software and daunting programming languages - No previous experience required—this book is for the true programming beginner! - Step-by-step examples, thorough explanations, hands-on exercises, and sample code supports your learning curve


Getting Started with Processing.py

Getting Started with Processing.py

PDF Getting Started with Processing.py Download

  • Author: Allison Parrish
  • Publisher: Maker Media, Inc.
  • ISBN: 1457186799
  • Category : Computers
  • Languages : en
  • Pages : 204

Processing opened up the world of programming to artists, designers, educators, and beginners. The Processing.py Python implementation of Processing reinterprets it for today's web. This short book gently introduces the core concepts of computer programming and working with Processing. Written by the co-founders of the Processing project, Reas and Fry, along with co-author Allison Parrish, Getting Started with Processing.py is your fast track to using Python's Processing mode.


Practical Natural Language Processing

Practical Natural Language Processing

PDF Practical Natural Language Processing Download

  • Author: Sowmya Vajjala
  • Publisher: O'Reilly Media
  • ISBN: 149205402X
  • Category : Computers
  • Languages : en
  • Pages : 455

Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective


Differential Processing Training Program Linguistic Tasks

Differential Processing Training Program Linguistic Tasks

PDF Differential Processing Training Program Linguistic Tasks Download

  • Author: Kerry Winget
  • Publisher: LinguiSystems
  • ISBN: 9780760607244
  • Category : English language
  • Languages : en
  • Pages : 3


Biopharmaceutical Processing

Biopharmaceutical Processing

PDF Biopharmaceutical Processing Download

  • Author: Gunter Jagschies
  • Publisher: Elsevier
  • ISBN: 0128125527
  • Category : Technology & Engineering
  • Languages : en
  • Pages : 1310

Biopharmaceutical Processing: Development, Design, and Implementation of Manufacturing Processes covers bioprocessing from cell line development to bulk drug substances. The methods and strategies described are essential learning for every scientist, engineer or manager in the biopharmaceutical and vaccines industry. The integrity of the bioprocess ultimately determines the quality of the product in the biotherapeutics arena, and this book covers every stage including all technologies related to downstream purification and upstream processing fields. Economic considerations are included throughout, with recommendations for lowering costs and improving efficiencies. Designed for quick reference and easy accessibility of facts, calculations and guidelines, this book is an essential tool for industrial scientists and managers in the biopharmaceutical industry. - Offers a comprehensive, go-to reference for daily work decisions - Covers both upstream and downstream processes - Includes case studies that emphasize financial outcomes - Presents summaries, decision grids, graphs and overviews for quick reference


The Word Processing Book

The Word Processing Book

PDF The Word Processing Book Download

  • Author: Peter McWilliams
  • Publisher:
  • ISBN:
  • Category : Business & Economics
  • Languages : en
  • Pages : 308


Speech & Language Processing

Speech & Language Processing

PDF Speech & Language Processing Download

  • Author: Dan Jurafsky
  • Publisher: Pearson Education India
  • ISBN: 9788131716724
  • Category :
  • Languages : en
  • Pages : 912


Introduction to Natural Language Processing

Introduction to Natural Language Processing

PDF Introduction to Natural Language Processing Download

  • Author: Jacob Eisenstein
  • Publisher: MIT Press
  • ISBN: 0262354578
  • Category : Computers
  • Languages : en
  • Pages : 536

A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.


MAPPING: MAnagement and Processing of Images for Population ImagiNG

MAPPING: MAnagement and Processing of Images for Population ImagiNG

PDF MAPPING: MAnagement and Processing of Images for Population ImagiNG Download

  • Author: Michel Dojat
  • Publisher: Frontiers Media SA
  • ISBN: 2889452603
  • Category :
  • Languages : en
  • Pages : 141

Several recent papers underline methodological points that limit the validity of published results in imaging studies in the life sciences and especially the neurosciences (Carp, 2012; Ingre, 2012; Button et al., 2013; Ioannidis, 2014). At least three main points are identified that lead to biased conclusions in research findings: endemic low statistical power and, selective outcome and selective analysis reporting. Because of this, and in view of the lack of replication studies, false discoveries or solutions persist. To overcome the poor reliability of research findings, several actions should be promoted including conducting large cohort studies, data sharing and data reanalysis. The construction of large-scale online databases should be facilitated, as they may contribute to the definition of a “collective mind” (Fox et al., 2014) facilitating open collaborative work or “crowd science” (Franzoni and Sauermann, 2014). Although technology alone cannot change scientists’ practices (Wicherts et al., 2011; Wallis et al., 2013, Poldrack and Gorgolewski 2014; Roche et al. 2014), technical solutions should be identified which support a more “open science” approach. Also, the analysis of the data plays an important role. For the analysis of large datasets, image processing pipelines should be constructed based on the best algorithms available and their performance should be objectively compared to diffuse the more relevant solutions. Also, provenance of processed data should be ensured (MacKenzie-Graham et al., 2008). In population imaging this would mean providing effective tools for data sharing and analysis without increasing the burden on researchers. This subject is the main objective of this research topic (RT), cross-listed between the specialty section “Computer Image Analysis” of Frontiers in ICT and Frontiers in Neuroinformatics. Firstly, it gathers works on innovative solutions for the management of large imaging datasets possibly distributed in various centers. The paper of Danso et al. describes their experience with the integration of neuroimaging data coming from several stroke imaging research projects. They detail how the initial NeuroGrid core metadata schema was gradually extended for capturing all information required for future metaanalysis while ensuring semantic interoperability for future integration with other biomedical ontologies. With a similar preoccupation of interoperability, Shanoir relies on the OntoNeuroLog ontology (Temal et al., 2008; Gibaud et al., 2011; Batrancourt et al., 2015), a semantic model that formally described entities and relations in medical imaging, neuropsychological and behavioral assessment domains. The mechanism of “Study Card” allows to seamlessly populate metadata aligned with the ontology, avoiding fastidious manual entrance and the automatic control of the conformity of imported data with a predefined study protocol. The ambitious objective with the BIOMIST platform is to provide an environment managing the entire cycle of neuroimaging data from acquisition to analysis ensuring full provenance information of any derived data. Interestingly, it is conceived based on the product lifecycle management approach used in industry for managing products (here neuroimaging data) from inception to manufacturing. Shanoir and BIOMIST share in part the same OntoNeuroLog ontology facilitating their interoperability. ArchiMed is a data management system locally integrated for 5 years in a clinical environment. Not restricted to Neuroimaging, ArchiMed deals with multi-modal and multi-organs imaging data with specific considerations for data long-term conservation and confidentiality in accordance with the French legislation. Shanoir and ArchiMed are integrated into FLI-IAM1, the national French IT infrastructure for in vivo imaging.