Introduction to Statistical Quality Control

Introduction to Statistical Quality Control

PDF Introduction to Statistical Quality Control Download

  • Author: Christina M. Mastrangelo
  • Publisher: Wiley
  • ISBN:
  • Category : Business & Economics
  • Languages : en
  • Pages : 244

Revised and expanded, this Second Edition continues to explore the modern practice of statistical quality control, providing comprehensive coverage of the subject from basic principles to state-of-the-art concepts and applications. The objective is to give the reader a thorough grounding in the principles of statistical quality control and a basis for applying those principles in a wide variety of both product and nonproduct situations. Divided into four parts, it contains numerous changes, including a more detailed discussion of the basic SPC problem-solving tools and two new case studies, expanded treatment on variable control charts with new examples, a chapter devoted entirely to cumulative-sum control charts and exponentially-weighted, moving-average control charts, and a new section on process improvement with designed experiments.


Introduction to Statistical Quality Control

Introduction to Statistical Quality Control

PDF Introduction to Statistical Quality Control Download

  • Author: Douglas C. Montgomery
  • Publisher: John Wiley & Sons
  • ISBN: 1119657113
  • Category : Einführung
  • Languages : en
  • Pages : 773

"Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines.Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences.A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, provides students with a solid base of conceptual and practical knowledge."--


Douglas Montgomery's Introduction to Statistical Quality Control

Douglas Montgomery's Introduction to Statistical Quality Control

PDF Douglas Montgomery's Introduction to Statistical Quality Control Download

  • Author: Brenda S. Ramirez, M.S.
  • Publisher: SAS Institute
  • ISBN: 1635268230
  • Category : Computers
  • Languages : en
  • Pages : 444

Master Statistical Quality Control using JMP ! Using examples from the popular textbook by Douglas Montgomery, Introduction to Statistical Quality Control: A JMP Companion demonstrates the powerful Statistical Quality Control (SQC) tools found in JMP. Geared toward students and practitioners of SQC who are using these techniques to monitor and improve products and processes, this companion provides step-by-step instructions on how to use JMP to generate the output and solutions found in Montgomery’s book. The authors combine their many years of experience as passionate practitioners of SQC and their expertise using JMP to highlight the recent advances in JMP’s Analyze menu, and in particular, Quality and Process. Key JMP platforms include: Control Chart Builder CUSUM Control Chart Control Chart (XBar, IR, P, NP, C, U, UWMA, EWMA, CUSUM) Process Screening Process Capability Measurement System Analysis Time Series Multivariate Control Chart Multivariate and Principal Components Distribution For anyone who wants to learn how to use JMP to more easily explore data using tools associated with Statistical Process Control, Process Capability Analysis, Measurement System Analysis, Advanced Statistical Process Control, and Process Health Assessment, this book is a must!


Introduction to Statistical Quality Control

Introduction to Statistical Quality Control

PDF Introduction to Statistical Quality Control Download

  • Author: Douglas C. Montgomery
  • Publisher: John Wiley & Sons
  • ISBN: 1119723094
  • Category : Technology & Engineering
  • Languages : en
  • Pages : 768

Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines. Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences. A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, and incorporation of Minitab statistics software, provides students with a solid base of conceptual and practical knowledge.


Introduction to Engineering Statistics and Lean Sigma

Introduction to Engineering Statistics and Lean Sigma

PDF Introduction to Engineering Statistics and Lean Sigma Download

  • Author: Theodore T. Allen
  • Publisher: Springer Science & Business Media
  • ISBN: 1849960003
  • Category : Technology & Engineering
  • Languages : en
  • Pages : 573

Lean production, has long been regarded as critical to business success in many industries. Over the last ten years, instruction in six sigma has been increasingly linked with learning about the elements of lean production. Introduction to Engineering Statistics and Lean Sigma builds on the success of its first edition (Introduction to Engineering Statistics and Six Sigma) to reflect the growing importance of the "lean sigma" hybrid. As well as providing detailed definitions and case studies of all six sigma methods, Introduction to Engineering Statistics and Lean Sigma forms one of few sources on the relationship between operations research techniques and lean sigma. Readers will be given the information necessary to determine which sigma methods to apply in which situation, and to predict why and when a particular method may not be effective. Methods covered include: • control charts and advanced control charts, • failure mode and effects analysis, • Taguchi methods, • gauge R&R, and • genetic algorithms. The second edition also greatly expands the discussion of Design For Six Sigma (DFSS), which is critical for many organizations that seek to deliver desirable products that work first time. It incorporates recently emerging formulations of DFSS from industry leaders and offers more introductory material on the design of experiments, and on two level and full factorial experiments, to help improve student intuition-building and retention. The emphasis on lean production, combined with recent methods relating to Design for Six Sigma (DFSS), makes Introduction to Engineering Statistics and Lean Sigma a practical, up-to-date resource for advanced students, educators, and practitioners.


Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control

Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control

PDF Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control Download

  • Author: Dharmaraja Selvamuthu
  • Publisher: Springer
  • ISBN: 9811317364
  • Category : Mathematics
  • Languages : en
  • Pages : 445

This book provides an accessible presentation of concepts from probability theory, statistical methods, the design of experiments and statistical quality control. It is shaped by the experience of the two teachers teaching statistical methods and concepts to engineering students, over a decade. Practical examples and end-of-chapter exercises are the highlights of the text as they are purposely selected from different fields. Statistical principles discussed in the book have great relevance in several disciplines like economics, commerce, engineering, medicine, health-care, agriculture, biochemistry, and textiles to mention a few. A large number of students with varied disciplinary backgrounds need a course in basics of statistics, the design of experiments and statistical quality control at an introductory level to pursue their discipline of interest. No previous knowledge of probability or statistics is assumed, but an understanding of calculus is a prerequisite. The whole book serves as a master level introductory course in all the three topics, as required in textile engineering or industrial engineering. Organised into 10 chapters, the book discusses three different courses namely statistics, the design of experiments and quality control. Chapter 1 is the introductory chapter which describes the importance of statistical methods, the design of experiments and statistical quality control. Chapters 2–6 deal with statistical methods including basic concepts of probability theory, descriptive statistics, statistical inference, statistical test of hypothesis and analysis of correlation and regression. Chapters 7–9 deal with the design of experiments including factorial designs and response surface methodology, and Chap. 10 deals with statistical quality control.


Introduction to Statistical Process Control

Introduction to Statistical Process Control

PDF Introduction to Statistical Process Control Download

  • Author: Peihua Qiu
  • Publisher: CRC Press
  • ISBN: 1482220415
  • Category : Business & Economics
  • Languages : en
  • Pages : 520

A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon


Introduction to Statistical Process Control

Introduction to Statistical Process Control

PDF Introduction to Statistical Process Control Download

  • Author: Muhammad Aslam
  • Publisher: John Wiley & Sons
  • ISBN: 1119528453
  • Category : Mathematics
  • Languages : en
  • Pages : 288

An Introduction to the Fundamentals and History of Control Charts, Applications, and Guidelines for Implementation Introduction to Statistical Process Control examines various types of control charts that are typically used by engineering students and practitioners. This book helps readers develop a better understanding of the history, implementation, and use-cases. Students are presented with varying control chart techniques, information, and roadmaps to ensure their control charts are operating efficiently and producing specification-confirming products. This is the essential text on the theories and applications behind statistical methods and control procedures. This eight-chapter reference breaks information down into digestible sections and covers topics including: ● An introduction to the basics as well as a background of control charts ● Widely used and newly researched attributes of control charts, including guidelines for implementation ● The process capability index for both normal and non-normal distribution via the sampling of multiple dependent states ● An overview of attribute control charts based on memory statistics ● The development of control charts using EQMA statistics For a solid understanding of control methodologies and the basics of quality assurance, Introduction to Statistical Process Control is a definitive reference designed to be read by practitioners and students alike. It is an essential textbook for those who want to explore quality control and systems design.


Multivariate Statistical Quality Control Using R

Multivariate Statistical Quality Control Using R

PDF Multivariate Statistical Quality Control Using R Download

  • Author: Edgar Santos-Fernández
  • Publisher: Springer Science & Business Media
  • ISBN: 1461454530
  • Category : Computers
  • Languages : en
  • Pages : 134

​​​​​The intensive use of automatic data acquisition system and the use of cloud computing for process monitoring have led to an increased occurrence of industrial processes that utilize statistical process control and capability analysis. These analyses are performed almost exclusively with multivariate methodologies. The aim of this Brief is to present the most important MSQC techniques developed in R language. The book is divided into two parts. The first part contains the basic R elements, an introduction to statistical procedures, and the main aspects related to Statistical Quality Control (SQC). The second part covers the construction of multivariate control charts, the calculation of Multivariate Capability Indices.


Statistical Quality Control

Statistical Quality Control

PDF Statistical Quality Control Download

  • Author: Bhisham C. Gupta
  • Publisher: John Wiley & Sons
  • ISBN: 1119671728
  • Category : Technology & Engineering
  • Languages : en
  • Pages : 400

STATISTICAL QUALITY CONTROL Provides a basic understanding of statistical quality control (SQC) and demonstrates how to apply the techniques of SQC to improve the quality of products in various sectors This book introduces Statistical Quality Control and the elements of Six Sigma Methodology, illustrating the widespread applications that both have for a multitude of areas, including manufacturing, finance, transportation, and more. It places emphasis on both the theory and application of various SQC techniques and offers a large number of examples using data encountered in real life situations to support each theoretical concept. Statistical Quality Control: Using MINITAB, R, JMP and Python begins with a brief discussion of the different types of data encountered in various fields of statistical applications and introduces graphical and numerical tools needed to conduct preliminary analysis of the data. It then discusses the basic concept of statistical quality control (SQC) and Six Sigma Methodology and examines the different types of sampling methods encountered when sampling schemes are used to study certain populations. The book also covers Phase 1 Control Charts for variables and attributes; Phase II Control Charts to detect small shifts; the various types of Process Capability Indices (CPI); certain aspects of Measurement System Analysis (MSA); various aspects of PRE-control; and more. This helpful guide also Focuses on the learning and understanding of statistical quality control for second and third year undergraduates and practitioners in the field Discusses aspects of Six Sigma Methodology Teaches readers to use MINITAB, R, JMP and Python to create and analyze charts Requires no previous knowledge of statistical theory Is supplemented by an instructor-only book companion site featuring data sets and a solutions manual to all problems, as well as a student book companion site that includes data sets and a solutions manual to all odd-numbered problems Statistical Quality Control: Using MINITAB, R, JMP and Python is an excellent book for students studying engineering, statistics, management studies, and other related fields and who are interested in learning various techniques of statistical quality control. It also serves as a desk reference for practitioners who work to improve quality in various sectors, such as manufacturing, service, transportation, medical, oil, and financial institutions. It‘s also useful for those who use Six Sigma techniques to improve the quality of products in such areas.