Computational Complexity

Computational Complexity

PDF Computational Complexity Download

  • Author: Sanjeev Arora
  • Publisher: Cambridge University Press
  • ISBN: 0521424267
  • Category : Computers
  • Languages : en
  • Pages : 609

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Theory of Computational Complexity

Theory of Computational Complexity

PDF Theory of Computational Complexity Download

  • Author: Ding-Zhu Du
  • Publisher: John Wiley & Sons
  • ISBN: 1118031164
  • Category : Mathematics
  • Languages : en
  • Pages : 511

A complete treatment of fundamentals and recent advances in complexity theory Complexity theory studies the inherent difficulties of solving algorithmic problems by digital computers. This comprehensive work discusses the major topics in complexity theory, including fundamental topics as well as recent breakthroughs not previously available in book form. Theory of Computational Complexity offers a thorough presentation of the fundamentals of complexity theory, including NP-completeness theory, the polynomial-time hierarchy, relativization, and the application to cryptography. It also examines the theory of nonuniform computational complexity, including the computational models of decision trees and Boolean circuits, and the notion of polynomial-time isomorphism. The theory of probabilistic complexity, which studies complexity issues related to randomized computation as well as interactive proof systems and probabilistically checkable proofs, is also covered. Extraordinary in both its breadth and depth, this volume: * Provides complete proofs of recent breakthroughs in complexity theory * Presents results in well-defined form with complete proofs and numerous exercises * Includes scores of graphs and figures to clarify difficult material An invaluable resource for researchers as well as an important guide for graduate and advanced undergraduate students, Theory of Computational Complexity is destined to become the standard reference in the field.


Computational Complexity

Computational Complexity

PDF Computational Complexity Download

  • Author: Christos H. Papadimitriou
  • Publisher: MacMillan Publishing Company
  • ISBN: 9780020153085
  • Category : Computational complexity
  • Languages : en
  • Pages : 523

The first unified introduction and reference for the field of computational complexity. Virtually non-existent only 25 years ago, computational complexity has expanded tremendously and now comprises a major part of the researh activity in theoretical science.


Complexity and Real Computation

Complexity and Real Computation

PDF Complexity and Real Computation Download

  • Author: Lenore Blum
  • Publisher: Springer Science & Business Media
  • ISBN: 1461207010
  • Category : Computers
  • Languages : en
  • Pages : 456

The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.


Computational Complexity

Computational Complexity

PDF Computational Complexity Download

  • Author: Oded Goldreich
  • Publisher: Cambridge University Press
  • ISBN: 9780521884730
  • Category : Computers
  • Languages : en
  • Pages : 632

This book offers a comprehensive perspective to modern topics in complexity theory, which is a central field of the theoretical foundations of computer science. It addresses the looming question of what can be achieved within a limited amount of time with or without other limited natural computational resources. Can be used as an introduction for advanced undergraduate and graduate students as either a textbook or for self-study, or to experts, since it provides expositions of the various sub-areas of complexity theory such as hardness amplification, pseudorandomness and probabilistic proof systems.


The Computational Complexity of Machine Learning

The Computational Complexity of Machine Learning

PDF The Computational Complexity of Machine Learning Download

  • Author: Michael J. Kearns
  • Publisher: MIT Press
  • ISBN: 9780262111522
  • Category : Computers
  • Languages : en
  • Pages : 194

We also give algorithms for learning powerful concept classes under the uniform distribution, and give equivalences between natural models of efficient learnability. This thesis also includes detailed definitions and motivation for the distribution-free model, a chapter discussing past research in this model and related models, and a short list of important open problems."


Mathematics and Computation

Mathematics and Computation

PDF Mathematics and Computation Download

  • Author: Avi Wigderson
  • Publisher: Princeton University Press
  • ISBN: 0691189137
  • Category : Computers
  • Languages : en
  • Pages : 434

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography


Computational Complexity and Feasibility of Data Processing and Interval Computations

Computational Complexity and Feasibility of Data Processing and Interval Computations

PDF Computational Complexity and Feasibility of Data Processing and Interval Computations Download

  • Author: V. Kreinovich
  • Publisher: Springer Science & Business Media
  • ISBN: 1475727933
  • Category : Mathematics
  • Languages : en
  • Pages : 460

Targeted audience • Specialists in numerical computations, especially in numerical optimiza tion, who are interested in designing algorithms with automatie result ver ification, and who would therefore be interested in knowing how general their algorithms caIi in principle be. • Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational com plexity of numerical computations. • Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book .is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing.


Logical Foundations of Mathematics and Computational Complexity

Logical Foundations of Mathematics and Computational Complexity

PDF Logical Foundations of Mathematics and Computational Complexity Download

  • Author: Pavel Pudlák
  • Publisher: Springer Science & Business Media
  • ISBN: 3319001191
  • Category : Mathematics
  • Languages : en
  • Pages : 699

The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Emphasis is on explaining the essence of concepts and the ideas of proofs, rather than presenting precise formal statements and full proofs. Each section starts with concepts and results easily explained, and gradually proceeds to more difficult ones. The notes after each section present some formal definitions, theorems and proofs. Logical Foundations of Mathematics and Computational Complexity is aimed at graduate students of all fields of mathematics who are interested in logic, complexity and foundations. It will also be of interest for both physicists and philosophers who are curious to learn the basics of logic and complexity theory.


Computability and Complexity Theory

Computability and Complexity Theory

PDF Computability and Complexity Theory Download

  • Author: Steven Homer
  • Publisher: Springer Science & Business Media
  • ISBN: 1461406811
  • Category : Computers
  • Languages : en
  • Pages : 310

This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp─Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes