PDF Understanding Statistics Download
- Author: Graham Upton
- Publisher: Oxford University Press
- ISBN: 9780199143917
- Category : Juvenile Nonfiction
- Languages : en
- Pages : 680
Covers topics in statistics required for A-Level Mathematics.
eBook downloads, eBook resources & eBook authors
The modern world is brimming with statistical information—information relevant to our personal health and safety, the weather, or the robustness of the national or global economy, to name just a few examples. But don’t statistics lie? Well, no—people lie, and sometimes they use statistical language to do it. Knowing when you’re being hoodwinked requires a degree of statistical literacy, but most people don’t learn how to interpret statistical claims unless they take a formal course that trains them in the mathematical techniques of statistical analysis. This book won’t turn you into a statistician—that would require a much longer and more technical discussion—but it will give you the tools to understand statistical claims and avoid common pitfalls associated with translating statistical information from the language of mathematics to plain English.
This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.
This book was written to provide resource materials for teachers to use in their introductory or intermediate statistics class. The chapter content is ordered along the lines of many popular statistics books so it should be easy to supplement the content and exercises with class lecture materials. The book contains R script programs to demonstrate important topics and concepts covered in a statistics course, including probability, random sampling, population distribution types, role of the Central Limit Theorem, creation of sampling distributions for statistics, and more. The chapters contain T/F quizzes to test basic knowledge of the topics covered. In addition, the book chapters contain numerous exercises with answers or solutions to the exercises provided. The chapter exercises reinforce an understanding of the statistical concepts presented in the chapters. An instructor can select any of the supplemental materials to enhance lectures and/or provide additional coverage of concepts and topics in their statistics book.
Focuses on data and organization around the theme of TTmaking sense of data:TT generating, organizing, analyzing, and presenting data. The approach reflects modern thinking about the purpose of statistics as discipline concerned with problem solving in the real world. Consequently all aspects of the presentation revolve around the central content of applied statistics, which is making sense of data.
Understanding risk -- Putting risk in perspective -- Risk charts : a way to get perspective -- Judging the benefit of a health intervention -- Not all benefits are equal : understand the outcome -- Consider the downsides -- Do the benefits outweight the downsides? -- Beware of exaggerated importance -- Beware of exaggerated certainty -- Who's behind the numbers?
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
`This book is highly recommended for libraries and departments to adopt. If I had to teach a statistics class for sociology students this would be a book I would surely choose. The book achieves two very important goals: it teaches students a software package and trains them in the statistical analysis of sociological data′ - Journal of Applied Statistics This fully revised, expanded and updated Second Edition of the best-selling textbook by Jane Fielding and Nigel Gilbert provides a comprehensive yet accessible guide to quantitative data analysis. Designed to help take the fear out of the use of numbers in social research, this textbook introduces students to statistics as a powerful means of revealing patterns in human behaviour. The textbook covers everything typically included in an introductory course on social statistics for students in the social sciences and the authors have taken the opportunity of this Second Edition to bring the data sources as current as possible. The book is full of up-to-date examples and useful and clear illustrations using the latest SPSS software. While maintaining the student-friendly elements of the first, such as chapter summaries, exercises at the end of each chapter, and a glossary of key terms, new features to this edition include: - Updated examples and references SPSS coverage and screen-shots now incorporate the current version 14.0 and are used to demonstrate the latest social statistics datasets; - Additions to content include a brand new section on developing a coding frame and an additional discussion of weighting counts as a means of analyzing published statistics; - Enhanced design aids navigation which is further simplified by the addition of core objectives for each chapter and bullet-pointed chapter summaries; - The updated Website at http:/www.soc.surrey.ac.uk/uss/index.html reflects changes made to the text and provides updated datasets; A valuable and practical guide for students dealing with the large amounts of data that are typically collected in social surveys, the Second Edition of Understanding Social Statistics is an essential textbook for courses on statistics and quantitative research across the social sciences.