PDF Structure and Interpretation of Signals and Systems Download
- Author: Edward A. Lee
- Publisher: Lee & Seshia
- ISBN: 0578077191
- Category : Signal processing
- Languages : en
- Pages : 740
eBook downloads, eBook resources & eBook authors
Exploring signals and systems, this work develops continuous-time and discrete-time concepts, highlighting the differences and similarities. Two chapters deal with the Laplace transform and the Z-transform. Basic methods such as filtering, communication an
This comprehensive text on control systems is designed for undergraduate students pursuing courses in electronics and communication engineering, electrical and electronics engineering, telecommunication engineering, electronics and instrumentation engineering, mechanical engineering, and biomedical engineering. Appropriate for self-study, the book will also be useful for AMIE and IETE students. Written in a student-friendly readable manner, the book explains the basic fundamentals and concepts of control systems in a clearly understandable form. It is a balanced survey of theory aimed to provide the students with an in-depth insight into system behaviour and control of continuous-time control systems. All the solved and unsolved problems in this book are classroom tested, designed to illustrate the topics in a clear and thorough way. KEY FEATURES : Includes several fully worked-out examples to help students master the concepts involved. Provides short questions with answers at the end of each chapter to help students prepare for exams confidently. Offers fill in the blanks and objective type questions with answers at the end of each chapter to quiz students on key learning points. Gives chapter-end review questions and problems to assist students in reinforcing their knowledge.
This book is intended for use in teaching undergraduate courses on continuous-time and/or discrete-time signals and systems in engineering (and related) disciplines. It provides a detailed introduction to continuous-time and discrete-time signals and systems, with a focus on both theory and applications. The mathematics underlying signals and systems is presented, including topics such as: signal properties, elementary signals, system properties, continuous-time and discrete-time linear time-invariant systems, convolution, continuous-time and discrete-time Fourier series, the continuous-time and discrete-time Fourier transforms, frequency spectra, and the bilateral and unilateral Laplace and z transforms. Applications of the theory are also explored, including: filtering, equalization, amplitude modulation, sampling, feedback control systems, circuit analysis, Laplace-domain techniques for solving differential equations, and z-domain techniques for solving difference equations. Other supplemental material is also included, such as: a detailed introduction to MATLAB, a review of complex analysis, an introduction to partial fraction expansions, an exploration of time-domain techniques for solving differential equations, and information on online video-lecture content for material covered in the book. Throughout the book, many worked-through examples are provided. Problem sets are also provided for each major topic covered.
Signals and Systems Primer with MATLAB® equally emphasizes the fundamentals of both analog and digital signals and systems. To ensure insight into the basic concepts and methods, the text presents a variety of examples that illustrate a wide range of applications, from microelectromechanical to worldwide communication systems. It also provides MATLAB functions and procedures for practice and verification of these concepts. Taking a pedagogical approach, the author builds a solid foundation in signal processing as well as analog and digital systems. The book first introduces orthogonal signals, linear and time-invariant continuous-time systems, discrete-type systems, periodic signals represented by Fourier series, Gibbs's phenomenon, and the sampling theorem. After chapters on various transforms, the book discusses analog filter design, both finite and infinite impulse response digital filters, and the fundamentals of random digital signal processing, including the nonparametric spectral estimation. The final chapter presents different types of filtering and their uses for random digital signal processing, specifically, the use of Wiener filtering and least mean squares filtering. Balancing the study of signals with system modeling and interactions, this text will help readers accurately develop mathematical representations of systems.
These twenty lectures have been developed and refined by Professor Siebert during the more than two decades he has been teaching introductory Signals and Systems courses at MIT. The lectures are designed to pursue a variety of goals in parallel: to familiarize students with the properties of a fundamental set of analytical tools; to show how these tools can be applied to help understand many important concepts and devices in modern communication and control engineering practice; to explore some of the mathematical issues behind the powers and limitations of these tools; and to begin the development of the vocabulary and grammar, common images and metaphors, of a general language of signal and system theory. Although broadly organized as a series of lectures, many more topics and examples (as well as a large set of unusual problems and laboratory exercises) are included in the book than would be presented orally. Extensive use is made throughout of knowledge acquired in early courses in elementary electrical and electronic circuits and differential equations. Contents:Review of the "classical" formulation and solution of dynamic equations for simple electrical circuits; The unilateral Laplace transform and its applications; System functions; Poles and zeros; Interconnected systems and feedback; The dynamics of feedback systems; Discrete-time signals and linear difference equations; The unilateral Z-transform and its applications; The unit-sample response and discrete-time convolution; Convolutional representations of continuous-time systems; Impulses and the superposition integral; Frequency-domain methods for general LTI systems; Fourier series; Fourier transforms and Fourier's theorem; Sampling in time and frequency; Filters, real and ideal; Duration, rise-time and bandwidth relationships: The uncertainty principle; Bandpass operations and analog communication systems; Fourier transforms in discrete-time systems; Random Signals; Modern communication systems. William Siebert is Ford Professor of Engineering at MIT. Circuits, Signals, and Systemsis included in The MIT Press Series in Electrical Engineering and Computer Science, copublished with McGraw-Hill.
This book is a self-contained introduction to the theory of signals and systems, which lies at the basis of many areas of electrical and computer engineering. In the seventy short ?glectures,?h formatted to facilitate self-learning and to provide easy reference, the book covers such topics as linear time-invariant (LTI) systems, the Fourier transform, the Laplace Transform and its application to LTI differential systems, state-space systems, the z-transform, signal analysis using MATLAB, and the application of transform techniques to communication systems. A wide array of technologies, including feedback control, analog and discrete-time fi lters, modulation, and sampling systems are discussed in connection with their basis in signals and systems theory. The accompanying CD-ROM includes applets, source code, sample examinations, and exercises with selected solutions.
Signals and Systems Using MATLAB, Third Edition, features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more end-of-chapter problems, new content on two-dimensional signal processing, and discussions on the state-of-the-art in signal processing. - Introduces both continuous and discrete systems early, then studies each (separately) in-depth - Contains an extensive set of worked examples and homework assignments, with applications for controls, communications, and signal processing - Begins with a review on all the background math necessary to study the subject - Includes MATLAB® applications in every chapter
An exploration of the basics of signal theory, and of both the time-and frequency-domain analyses of systems. The discrete and continuous-time cases are presented in parallel, at times in a two-column format for ease of comparison. Separate chapters examine applications in signal processing, digital filtering, communication systems, and automatic c.