PDF Prebiotic Chemistry Download
- Author: Peter Walde
- Publisher: Springer Science & Business Media
- ISBN: 9783540277590
- Category : Science
- Languages : en
- Pages : 248
eBook downloads, eBook resources & eBook authors
Studying the origin of life is one of man’s greatest achievements over the last sixty years. The fields of interest encompassed by this quest are multiple and interdisciplinary: chemistry, physics, biology, biochemistry, mathematics, geology but also statistics, atmospheric science, meteorology, oceanography, and astrophysics. Recent scientific discoveries, such as water on Mars and the existence of super-Earths with atmospheres similar to primordial Earth, have pushed researchers to simulate prebiotic conditions in explaining the abiotic formation of molecules essential to life. This collection of articles offers an overview of recent discoveries in the field of prebiotic chemistry of biomolecules, their formation and selection, and the evolution of complex chemical systems.
Photochemistry is an important facet in the study of the origin of life and prebiotic chemistry. Solar photons are the unique source of the large amounts of energy likely required to initiate the organisation of matter to produce biological life. The Miller–Urey experiment simulated the conditions thought to be present on the early earth and supported the hypothesis that under such conditions complex organic compounds could be synthesised from simpler inorganic precursors. The experiment inspired many others, including the production of various alcohols, aldehydes and organic acids through UV-photolysis of water vapour with carbon monoxide. This book covers the photochemical aspects of the study of prebiotic and origin of life chemistry an ideal companion for postgraduates and researchers in prebiotic chemistry, photochemistry, photobiology, chemical biology and astrochemistry.
How life originated from the inanimate mixture of organic and inorganic compounds on the priomordial earth remains one of the great unknowns in science. This origin of life, or abiogenesis, continues to be examined in the context of the conditions and materials required for natural life to have begun on Earth both theoretically and experimentally. This book provides a broad but in-depth analysis of the latest discoveries in prebiotic chemsitry from the microscopic to the macroscopic scale; utilising experimental insight to provide a bottom up approach to plausibly explaining how life arose. With contributions from global leaders, this book is an ideal reference for postgraduate students and a single source of comprehensive information on the latest technical and theoretical advancements for researchers in a variety of fields from astrochemistry and astrophysics to organic chemistry and evolution.
The book is the first thorough study of the role of phosphorus chemistry in the origin of life. This book starts with depiction of the phosphorus role in life creation and evolution. Then it outlines in vital processes how different phosphorus-containing compounds participate as biomarker in life evolution. Written by renowned scientists, it is suitable for researchers and students in organic phosphorus chemistry and biochemistry.
This book presents an overview of current views on the origin of life and its earliest evolution. Each chapter describes key processes, environments and transition on the long road from geochemistry and astrochemistry to biochemistry and finally to the ancestors of today ́s organisms. This book combines the bottom-up and the top-down approaches to life including the origin of key chemical and structural features of living cells and the nature of abiotic factors that shaped these features in primordial environments. The book provides an overview of the topic as well as its state of the art for graduate students and newcomers to the field. It also serves as a reference for researchers in origins of life on Earth and beyond.
The dynamic field of astrochemistry brings together ideas of physics, astrophysics, biology and chemistry to the study of molecules between stars, around stars and on planets. Astrochemistry: from Astronomy to Astrobiology provides a clear and concise introduction to this rapidly evolving multidisciplinary subject. Starting with the Molecular Universe, the text covers the formation of the elements, simple models of stars and their classification. It then moves on to draw on the theme of the Origins of Life to study interstellar chemistry, meteorite and comet chemistry as well as the chemistry of planets. Prebiotic chemistry and astrobiology are explored by examining the extremes of the biosphere on Earth, seeing how this may be applied to life in other solar systems. Astrochemsitry assumes a basic familiarity with principles of physical and organic chemistry but no prior knowledge of biology or astrophysics. This innovative text incorporates results from the latest research and ground and space missions, with key images enhanced by a colour plate section. includes latest research and results from ground and space missions colour plate section summary of concepts and calculations at the end of each chapter accompanying website www.wiley.co/go/shawastrochemistry This book will be an ideal text for an undergraduate course in Astrochemistry and an essential tool for postgraduates entering the field.
This volume contains the lectures presented at the second course of the International School of Space Chemistry held in Erice (Sicily) from October 20 - 30 1991 at the "E. Majorana Centre for Scientific Culture". The course was attended by 58 participants from 13 countries. The Chemistry of Life's Origins is well recognized as one of the most critical subjects of modem chemistry. Much progress has been made since the amazingly perceptive contributions by Oparin some 70 years ago when he first outlined a possible series of steps starting from simple molecules to basic building blocks and ultimate assembly into simple organisms capable of replicating, catalysis and evolution to higher organisms. The pioneering experiments of Stanley Miller demonstrated already forty years ago how easy it could have been to form the amino acids which are critical to living organisms. However we have since learned and are still learning a great deal more about the primitive conditions on earth which has led us to a rethinking of where and how the condition for prebiotic chemical processes occurred. We have also learned a great deal more about the molecular basis for life. For instance, the existence of DNA was just discovered forty years ago.
This book provides an interdisciplinary review of one of the great unsolved mysteries that has fascinated scientists for over 150 years: the origin of chirality in biomolecules. It was Pasteur who first initiated the search for a deterministic theory to explain the 'handedness' of biomolecules. His theory, that a 'dissimetric' force was involved, was correct in essence but he never saw the fruits of his labour. Current thinking tells us that asymmetry in the universe has its origins in the forces that unfolded after the Big Bang and, more specifically, the weak force. Being 'left handed', the weak force imprinted its signature on the evolving Universe. However, at the molecular level, the weak force does not provide a straightforward explanation of biomolecular homochirality. In fact, it is yet to be proved beyond doubt that a causal link exists at all. Many alternative theories have been put forward, some of them resting on solid ground, but all lacking definitive experimental evidence to back them up. Some postulate that the handedness of molecules in the biosphere arose by chance but this is hard to test. Others rely on discovering life on similar planets and making comparisons with Earth. Alternative theories have emerged from a range of backgrounds including geology, biology, chemistry, physics and astronomy. Current advances in fields as diverse as space exploration, prebiotic chemistry and high-energy physics may help to provide an answer. Important pieces of information will come from observations at the two frontiers of science: outer space and the subatomic world. Observation of distant planets, galaxies, and even actual sampling of celestial objects from beyond the solar system are projects currently underway. At the other end of the spectrum, there are experiments that study the elemental properties of matter, such as symmetry, and interactions with the fundamental forces. All these efforts will render their fruits soon. This volume unifies all the theories of the origin of biomolecular homochirality together in one source. The various chapters focus on chance mechanisms, physical forces such as the 'weakinteraction', fluid dynamics, amplification of chirality, the organic contents of meteorites and comets and, finally, the physical view of an intrinsically asymmetric universe. This complete, interdisciplinary review of an intriguing subject condenses a large and disparate range of contributions from journals in almost every scientific field. The various theories have been organized, interrelated and explained in a unified way. One of the book's strengths is its extensive use of graphic material to aid understanding the many subjects covered. It is fundamental, comprehensive and structured to be accessible for educational purposes.
The concept of evolutionary change is a fundamental thread linking the sciences. An evolutionary perspective can provide one framework for unifying and advancing the sciences, and chemistry has made important contributions to our understanding of evolution. Chemists today use principles of evolution and take lessons from chemistry in nature to advance modern chemistry in areas such as agriculture, energy, new materials, and pharmaceuticals. The book explores the evolutionary nature of chemistry and the scientific evidence that supports it, and is a source of ideas for integrating these concepts in chemistry courses. The publication will be of interest to chemists, instructors and students of chemistry, and all others with an interest in the evolution of the universe in which we live. This volume continues the theme of Chemical Change Across Space and Time: From the Big Bang to Prebiotic Chemistry. This second volume begins with origins of life and culminates with applications of the concept of chemical evolution in modern society.