Introduction to Statistics Through Resampling Methods and R

Introduction to Statistics Through Resampling Methods and R

PDF Introduction to Statistics Through Resampling Methods and R Download

  • Author: Phillip I. Good
  • Publisher: John Wiley & Sons
  • ISBN: 1118428218
  • Category : Mathematics
  • Languages : en
  • Pages : 224

A highly accessible alternative approach to basic statistics Praise for the First Edition: "Certainly one of the most impressive little paperback 200-page introductory statistics books that I will ever see . . . it would make a good nightstand book for every statistician."—Technometrics Written in a highly accessible style, Introduction to Statistics through Resampling Methods and R, Second Edition guides students in the understanding of descriptive statistics, estimation, hypothesis testing, and model building. The book emphasizes the discovery method, enabling readers to ascertain solutions on their own rather than simply copy answers or apply a formula by rote. The Second Edition utilizes the R programming language to simplify tedious computations, illustrate new concepts, and assist readers in completing exercises. The text facilitates quick learning through the use of: More than 250 exercises—with selected "hints"—scattered throughout to stimulate readers' thinking and to actively engage them in applying their newfound skills An increased focus on why a method is introduced Multiple explanations of basic concepts Real-life applications in a variety of disciplines Dozens of thought-provoking, problem-solving questions in the final chapter to assist readers in applying statistics to real-life applications Introduction to Statistics through Resampling Methods and R, Second Edition is an excellent resource for students and practitioners in the fields of agriculture, astrophysics, bacteriology, biology, botany, business, climatology, clinical trials, economics, education, epidemiology, genetics, geology, growth processes, hospital administration, law, manufacturing, marketing, medicine, mycology, physics, political science, psychology, social welfare, sports, and toxicology who want to master and learn to apply statistical methods.


Mathematical Statistics with Resampling and R

Mathematical Statistics with Resampling and R

PDF Mathematical Statistics with Resampling and R Download

  • Author: Laura M. Chihara
  • Publisher: John Wiley & Sons
  • ISBN: 1119416523
  • Category : Mathematics
  • Languages : en
  • Pages : 557

This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.


Introduction to Statistics Through Resampling Methods and Microsoft Office Excel

Introduction to Statistics Through Resampling Methods and Microsoft Office Excel

PDF Introduction to Statistics Through Resampling Methods and Microsoft Office Excel Download

  • Author: Phillip I. Good
  • Publisher: John Wiley & Sons
  • ISBN: 0471741760
  • Category : Mathematics
  • Languages : en
  • Pages : 245

Learn statistical methods quickly and easily with the discovery method With its emphasis on the discovery method, this publication encourages readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers quickly master and learn to apply statistical methods, such as bootstrap, decision trees, t-test, and permutations to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: * Tests and estimation procedures for one, two, and multiple samples * Model building * Multivariate analysis * Complex experimental design Throughout the text, Microsoft Office Excel(r) is used to illustrate new concepts and assist readers in completing exercises. An Excel Primer is included as an Appendix for readers who need to learn or brush up on their Excel skills. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: * More than 100 exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills * Companion FTP site provides access to all data sets discussed in the text * An Instructor's Manual is available upon request from the publisher * Dozens of thought-provoking questions in the final chapter assist readers in applying statistics to solve real-life problems * Helpful appendices include an index to Excel and Excel add-in functions This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited to both students and practitioners.


An Introduction to Statistical Learning

An Introduction to Statistical Learning

PDF An Introduction to Statistical Learning Download

  • Author: Gareth James
  • Publisher: Springer Nature
  • ISBN: 3031387473
  • Category : Mathematics
  • Languages : en
  • Pages : 617

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.


Introduction to Statistics Through Resampling Methods and R/S-PLUS

Introduction to Statistics Through Resampling Methods and R/S-PLUS

PDF Introduction to Statistics Through Resampling Methods and R/S-PLUS Download

  • Author: Phillip I. Good
  • Publisher: John Wiley & Sons
  • ISBN: 0471722499
  • Category : Mathematics
  • Languages : en
  • Pages : 244

Stimulate learning through discovery With its emphasis on the discovery method, this book allows readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers will quickly master and learn to apply statistical methods, such as bootstrap, decision trees, and permutations, to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: Tests and estimation procedures for one, two, and multiple samples Model building Multivariate analysis Complex experimental design Throughout the text, the R programming language is used to illustrate new concepts and assist readers in completing exercises. Readers may download the freely available R programming language from the Internet or take advantage of the menu-driven S-PLUS® program. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: More than two hundred exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills Companion FTP site provides access to all data sets and programs discussed in the text Dozens of thought-provoking questions in the final chapter, Problem Solving, assist readers in applying statistics to address real-life problems Instructor's manual provides answers to exercises Helpful appendices include an introduction to S-PLUS® features This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited for both students and practitioners.


Introduction to Probability and Statistics Using R

Introduction to Probability and Statistics Using R

PDF Introduction to Probability and Statistics Using R Download

  • Author: G. Jay Kerns
  • Publisher: Lulu.com
  • ISBN: 0557249791
  • Category : Education
  • Languages : en
  • Pages : 388

This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.


Resampling Methods for Dependent Data

Resampling Methods for Dependent Data

PDF Resampling Methods for Dependent Data Download

  • Author: S. N. Lahiri
  • Publisher: Springer Science & Business Media
  • ISBN: 147573803X
  • Category : Mathematics
  • Languages : en
  • Pages : 382

By giving a detailed account of bootstrap methods and their properties for dependent data, this book provides illustrative numerical examples throughout. The book fills a gap in the literature covering research on re-sampling methods for dependent data that has witnessed vigorous growth over the last two decades but remains scattered in various statistics and econometrics journals. It can be used as a graduate level text and also as a research monograph for statisticians and econometricians.


An Introduction to Bootstrap Methods with Applications to R

An Introduction to Bootstrap Methods with Applications to R

PDF An Introduction to Bootstrap Methods with Applications to R Download

  • Author: Michael R. Chernick
  • Publisher: John Wiley & Sons
  • ISBN: 1118625412
  • Category : Mathematics
  • Languages : en
  • Pages : 318

A comprehensive introduction to bootstrap methods in the R programming environment Bootstrap methods provide a powerful approach to statistical data analysis, as they have more general applications than standard parametric methods. An Introduction to Bootstrap Methods with Applications to R explores the practicality of this approach and successfully utilizes R to illustrate applications for the bootstrap and other resampling methods. This book provides a modern introduction to bootstrap methods for readers who do not have an extensive background in advanced mathematics. Emphasis throughout is on the use of bootstrap methods as an exploratory tool, including its value in variable selection and other modeling environments. The authors begin with a description of bootstrap methods and its relationship to other resampling methods, along with an overview of the wide variety of applications of the approach. Subsequent chapters offer coverage of improved confidence set estimation, estimation of error rates in discriminant analysis, and applications to a wide variety of hypothesis testing and estimation problems, including pharmaceutical, genomics, and economics. To inform readers on the limitations of the method, the book also exhibits counterexamples to the consistency of bootstrap methods. An introduction to R programming provides the needed preparation to work with the numerous exercises and applications presented throughout the book. A related website houses the book's R subroutines, and an extensive listing of references provides resources for further study. Discussing the topic at a remarkably practical and accessible level, An Introduction to Bootstrap Methods with Applications to R is an excellent book for introductory courses on bootstrap and resampling methods at the upper-undergraduate and graduate levels. It also serves as an insightful reference for practitioners working with data in engineering, medicine, and the social sciences who would like to acquire a basic understanding of bootstrap methods.


Introductory Statistics and Analytics

Introductory Statistics and Analytics

PDF Introductory Statistics and Analytics Download

  • Author: Peter C. Bruce
  • Publisher: John Wiley & Sons
  • ISBN: 1118881338
  • Category : Mathematics
  • Languages : en
  • Pages : 320

Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrap A uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on applications of statistical concepts developed via resampling, with a background discussion of mathematical theory. This feature stresses statistical literacy and understanding, which demonstrates the fundamental basis for statistical inference and demystifies traditional formulas. The book begins with illustrations that have the essential statistical topics interwoven throughout before moving on to demonstrate the proper design of studies. Meeting all of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) requirements for an introductory statistics course, Introductory Statistics and Analytics: A Resampling Perspective also includes: Over 300 “Try It Yourself” exercises and intermittent practice questions, which challenge readers at multiple levels to investigate and explore key statistical concepts Numerous interactive links designed to provide solutions to exercises and further information on crucial concepts Linkages that connect statistics to the rapidly growing field of data science Multiple discussions of various software systems, such as Microsoft Office Excel®, StatCrunch, and R, to develop and analyze data Areas of concern and/or contrasting points-of-view indicated through the use of “Caution” icons Introductory Statistics and Analytics: A Resampling Perspective is an excellent primary textbook for courses in preliminary statistics as well as a supplement for courses in upper-level statistics and related fields, such as biostatistics and econometrics. The book is also a general reference for readers interested in revisiting the value of statistics.


Comparing Groups

Comparing Groups

PDF Comparing Groups Download

  • Author: Andrew S. Zieffler
  • Publisher: John Wiley & Sons
  • ISBN: 1118063678
  • Category : Social Science
  • Languages : en
  • Pages : 286

A hands-on guide to using R to carry out key statistical practices in educational and behavioral sciences research Computing has become an essential part of the day-to-day practice of statistical work, broadening the types of questions that can now be addressed by research scientists applying newly derived data analytic techniques. Comparing Groups: Randomization and Bootstrap Methods Using R emphasizes the direct link between scientific research questions and data analysis. Rather than relying on mathematical calculations, this book focus on conceptual explanations and the use of statistical computing in an effort to guide readers through the integration of design, statistical methodology, and computation to answer specific research questions regarding group differences. Utilizing the widely-used, freely accessible R software, the authors introduce a modern approach to promote methods that provide a more complete understanding of statistical concepts. Following an introduction to R, each chapter is driven by a research question, and empirical data analysis is used to provide answers to that question. These examples are data-driven inquiries that promote interaction between statistical methods and ideas and computer application. Computer code and output are interwoven in the book to illustrate exactly how each analysis is carried out and how output is interpreted. Additional topical coverage includes: Data exploration of one variable and multivariate data Comparing two groups and many groups Permutation tests, randomization tests, and the independent samples t-Test Bootstrap tests and bootstrap intervals Interval estimates and effect sizes Throughout the book, the authors incorporate data from real-world research studies as well aschapter problems that provide a platform to perform data analyses. A related Web site features a complete collection of the book's datasets along with the accompanying codebooks and the R script files and commands, allowing readers to reproduce the presented output and plots. Comparing Groups: Randomization and Bootstrap Methods Using R is an excellent book for upper-undergraduate and graduate level courses on statistical methods, particularlyin the educational and behavioral sciences. The book also serves as a valuable resource for researchers who need a practical guide to modern data analytic and computational methods.