Introduction to Differential Topology

Introduction to Differential Topology

PDF Introduction to Differential Topology Download

  • Author: Theodor Bröcker
  • Publisher: Cambridge University Press
  • ISBN: 9780521284707
  • Category : Mathematics
  • Languages : en
  • Pages : 176

This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.


Differential Topology

Differential Topology

PDF Differential Topology Download

  • Author: Morris W. Hirsch
  • Publisher: Springer Science & Business Media
  • ISBN: 146849449X
  • Category : Mathematics
  • Languages : en
  • Pages : 230

"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." —MATHEMATICAL REVIEWS


Differential Topology

Differential Topology

PDF Differential Topology Download

  • Author: Victor Guillemin
  • Publisher: American Mathematical Soc.
  • ISBN: 0821851934
  • Category : Mathematics
  • Languages : en
  • Pages : 242

Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.


An Introduction To Differential Manifolds

An Introduction To Differential Manifolds

PDF An Introduction To Differential Manifolds Download

  • Author: Dennis Barden
  • Publisher: World Scientific
  • ISBN: 1911298232
  • Category : Mathematics
  • Languages : en
  • Pages : 231

This invaluable book, based on the many years of teaching experience of both authors, introduces the reader to the basic ideas in differential topology. Among the topics covered are smooth manifolds and maps, the structure of the tangent bundle and its associates, the calculation of real cohomology groups using differential forms (de Rham theory), and applications such as the Poincaré-Hopf theorem relating the Euler number of a manifold and the index of a vector field. Each chapter contains exercises of varying difficulty for which solutions are provided. Special features include examples drawn from geometric manifolds in dimension 3 and Brieskorn varieties in dimensions 5 and 7, as well as detailed calculations for the cohomology groups of spheres and tori.


Elements of Differential Topology

Elements of Differential Topology

PDF Elements of Differential Topology Download

  • Author: Anant R. Shastri
  • Publisher: CRC Press
  • ISBN: 1439831637
  • Category : Mathematics
  • Languages : en
  • Pages : 317

Derived from the author's course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topol


Topology from the Differentiable Viewpoint

Topology from the Differentiable Viewpoint

PDF Topology from the Differentiable Viewpoint Download

  • Author: John Willard Milnor
  • Publisher: Princeton University Press
  • ISBN: 9780691048338
  • Category : Mathematics
  • Languages : en
  • Pages : 80

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.


Differential Geometry and Topology

Differential Geometry and Topology

PDF Differential Geometry and Topology Download

  • Author: Keith Burns
  • Publisher: CRC Press
  • ISBN: 9781584882534
  • Category : Mathematics
  • Languages : en
  • Pages : 408

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.


An Introduction to Manifolds

An Introduction to Manifolds

PDF An Introduction to Manifolds Download

  • Author: Loring W. Tu
  • Publisher: Springer Science & Business Media
  • ISBN: 1441974008
  • Category : Mathematics
  • Languages : en
  • Pages : 426

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.


An Introduction to Differential Manifolds

An Introduction to Differential Manifolds

PDF An Introduction to Differential Manifolds Download

  • Author: Jacques Lafontaine
  • Publisher: Springer
  • ISBN: 3319207350
  • Category : Mathematics
  • Languages : en
  • Pages : 408

This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.


Differential Manifolds

Differential Manifolds

PDF Differential Manifolds Download

  • Author: Antoni A. Kosinski
  • Publisher: Courier Corporation
  • ISBN: 048631815X
  • Category : Mathematics
  • Languages : en
  • Pages : 290

Introductory text for advanced undergraduates and graduate students presents systematic study of the topological structure of smooth manifolds, starting with elements of theory and concluding with method of surgery. 1993 edition.