PDF International Recommendations for Industrial Statistics Download
- Author: United Nations. Statistical Office
- Publisher: United Nations Publications
- ISBN: 9789211615111
- Category : Political Science
- Languages : en
- Pages : 157
eBook downloads, eBook resources & eBook authors
A unique and comprehensive source of information, this book is the only international publication providing economists, planners, policymakers and business people with worldwide statistics on current performance and trends in the manufacturing sector.
The publication provides recommendations on the concepts, definitions, classifications, data sources, data compilation methods, approaches to data quality assessment, metadata and dissemination policies applicable in distributive trade statistics. The recommendations also cover some specific topics that have been identified as requiring additional guidance such as the treatment of informal sector units, compilation of indices of distributive trade and seasonal adjustment. The information is consistent with those issued in other fields of economic statistics and has been harmonized with the System of National Accounts 2008 (2008 SNA).
Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.
HELPS YOU FULLY LEVERAGE STATISTICAL METHODS TO IMPROVE INDUSTRIAL PERFORMANCE Industrial Statistics guides you through ten practical statistical methods that have broad applications in many different industries for enhancing research, product design, process design, validation, manufacturing, and continuous improvement. As you progress through the book, you'll discover some valuable methods that are currently underutilized in industry as well as other methods that are often not used correctly. With twenty-five years of teaching and consulting experience, author Anand Joglekar has helped a diverse group of companies reduce costs, accelerate product development, and improve operations through the effective implementation of statistical methods. Based on his experience working with both clients and students, Dr. Joglekar focuses on real-world problem-solving. For each statistical method, the book: Presents the most important underlying concepts clearly and succinctly Minimizes mathematical details that can be delegated to a computer Illustrates applications with numerous practical examples Offers a "Questions to Ask" section at the end of each chapter to assist you with implementation The last chapter consists of 100 practical questions followed by their answers. If you're already familiar with statistical methods, you may want to take the test first to determine which methods to focus on. By helping readers fully leverage statistical methods to improve industrial performance, this book becomes an ideal reference and self-study guide for scientists, engineers, managers and other technical professionals across a wide range of industries. In addition, its clear explanations and examples make it highly suited as a textbook for undergraduate and graduate courses in statistics.
This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
A view of how the countries of the world compare on everything from economic strength to energy consumption, industrial output to inflation, export trends to education standards, freezer ownership to financial institutions, CCF emissions to the cost of living and meat production to murder rates.