From Calculus to Cohomology

From Calculus to Cohomology

PDF From Calculus to Cohomology Download

  • Author: Ib H. Madsen
  • Publisher: Cambridge University Press
  • ISBN: 9780521589567
  • Category : Mathematics
  • Languages : en
  • Pages : 302

An introductory textbook on cohomology and curvature with emphasis on applications.


Global Calculus

Global Calculus

PDF Global Calculus Download

  • Author: S. Ramanan
  • Publisher: American Mathematical Soc.
  • ISBN: 0821837028
  • Category : Mathematics
  • Languages : en
  • Pages : 330

The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.


Vector Analysis

Vector Analysis

PDF Vector Analysis Download

  • Author: Klaus Jänich
  • Publisher: Springer Science & Business Media
  • ISBN: 1475734786
  • Category : Mathematics
  • Languages : en
  • Pages : 289

This book presents modern vector analysis and carefully describes the classical notation and understanding of the theory. It covers all of the classical vector analysis in Euclidean space, as well as on manifolds, and goes on to introduce de Rham Cohomology, Hodge theory, elementary differential geometry, and basic duality. The material is accessible to readers and students with only calculus and linear algebra as prerequisites. A large number of illustrations, exercises, and tests with answers make this book an invaluable self-study source.


Cohomology and Differential Forms

Cohomology and Differential Forms

PDF Cohomology and Differential Forms Download

  • Author: Izu Vaisman
  • Publisher: Courier Dover Publications
  • ISBN: 0486804836
  • Category : Mathematics
  • Languages : en
  • Pages : 305

This monograph explores the cohomological theory of manifolds with various sheaves and its application to differential geometry. Based on lectures given by author Izu Vaisman at Romania's University of Iasi, the treatment is suitable for advanced undergraduates and graduate students of mathematics as well as mathematical researchers in differential geometry, global analysis, and topology. A self-contained development of cohomological theory constitutes the central part of the book. Topics include categories and functors, the Čech cohomology with coefficients in sheaves, the theory of fiber bundles, and differentiable, foliated, and complex analytic manifolds. The final chapter covers the theorems of de Rham and Dolbeault-Serre and examines the theorem of Allendoerfer and Eells, with applications of these theorems to characteristic classes and the general theory of harmonic forms.


Differential Geometry

Differential Geometry

PDF Differential Geometry Download

  • Author: Loring W. Tu
  • Publisher: Springer
  • ISBN: 3319550845
  • Category : Mathematics
  • Languages : en
  • Pages : 358

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.


Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology

PDF Lecture Notes on Motivic Cohomology Download

  • Author: Carlo Mazza
  • Publisher: American Mathematical Soc.
  • ISBN: 9780821838471
  • Category : Mathematics
  • Languages : en
  • Pages : 240

The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).


Differential Forms in Algebraic Topology

Differential Forms in Algebraic Topology

PDF Differential Forms in Algebraic Topology Download

  • Author: Raoul Bott
  • Publisher: Springer Science & Business Media
  • ISBN: 1475739516
  • Category : Mathematics
  • Languages : en
  • Pages : 319

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.


Hochschild Cohomology for Algebras

Hochschild Cohomology for Algebras

PDF Hochschild Cohomology for Algebras Download

  • Author: Sarah J. Witherspoon
  • Publisher: American Mathematical Soc.
  • ISBN: 1470449315
  • Category : Education
  • Languages : en
  • Pages : 265

This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.


An Introduction to Manifolds

An Introduction to Manifolds

PDF An Introduction to Manifolds Download

  • Author: Loring W. Tu
  • Publisher: Springer Science & Business Media
  • ISBN: 1441974008
  • Category : Mathematics
  • Languages : en
  • Pages : 426

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.


Foundations of Differentiable Manifolds and Lie Groups

Foundations of Differentiable Manifolds and Lie Groups

PDF Foundations of Differentiable Manifolds and Lie Groups Download

  • Author: Frank W. Warner
  • Publisher: Springer Science & Business Media
  • ISBN: 1475717997
  • Category : Mathematics
  • Languages : en
  • Pages : 283

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.