Differential Forms and the Geometry of General Relativity

Differential Forms and the Geometry of General Relativity

PDF Differential Forms and the Geometry of General Relativity Download

  • Author: Tevian Dray
  • Publisher: CRC Press
  • ISBN: 1466510323
  • Category : Mathematics
  • Languages : en
  • Pages : 315

Requiring little more than calculus and some linear algebra, this book provides readers with a coherent path to understanding relativity. It helps readers learn just enough differential geometry to grasp the basics of general relativity. The first half of the book describes some of the surprising implications of relativity without introducing more formalism than necessary. The second half takes a more detailed look at the mathematics of differential forms, showing how they are used to describe key geometric ideas in general relativity.


Formulations of General Relativity

Formulations of General Relativity

PDF Formulations of General Relativity Download

  • Author: Kirill Krasnov
  • Publisher: Cambridge University Press
  • ISBN: 1108481647
  • Category : Science
  • Languages : en
  • Pages : 391

Carefully documenting the different formulations of general relativity, the author reveals valuable insight into the nature of the gravitational force and its interaction with matter. This book will interest graduate students and researchers in the fields of general relativity, gravitational physics and differential geometry.


Visual Differential Geometry and Forms

Visual Differential Geometry and Forms

PDF Visual Differential Geometry and Forms Download

  • Author: Tristan Needham
  • Publisher: Princeton University Press
  • ISBN: 0691203709
  • Category : Mathematics
  • Languages : en
  • Pages : 530

An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.


Differential Geometry, Gauge Theories, and Gravity

Differential Geometry, Gauge Theories, and Gravity

PDF Differential Geometry, Gauge Theories, and Gravity Download

  • Author: M. Göckeler
  • Publisher: Cambridge University Press
  • ISBN: 9780521378215
  • Category : Mathematics
  • Languages : en
  • Pages : 248

Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.


Manifolds, Tensors and Forms

Manifolds, Tensors and Forms

PDF Manifolds, Tensors and Forms Download

  • Author: Paul Renteln
  • Publisher: Cambridge University Press
  • ISBN: 1107042194
  • Category : Mathematics
  • Languages : en
  • Pages : 343

Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.


Modern Differential Geometry for Physicists

Modern Differential Geometry for Physicists

PDF Modern Differential Geometry for Physicists Download

  • Author: Chris J. Isham
  • Publisher: Allied Publishers
  • ISBN: 9788177643169
  • Category : Geometry, Differential
  • Languages : en
  • Pages : 308


Functional Differential Geometry

Functional Differential Geometry

PDF Functional Differential Geometry Download

  • Author: Gerald Jay Sussman
  • Publisher: MIT Press
  • ISBN: 0262019345
  • Category : Mathematics
  • Languages : en
  • Pages : 249

An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.


Spacetime

Spacetime

PDF Spacetime Download

  • Author: Marcus Kriele
  • Publisher: Springer Science & Business Media
  • ISBN: 3540483543
  • Category : Science
  • Languages : en
  • Pages : 444

One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.


Inequalities for Differential Forms

Inequalities for Differential Forms

PDF Inequalities for Differential Forms Download

  • Author: Ravi P. Agarwal
  • Publisher: Springer Science & Business Media
  • ISBN: 0387684174
  • Category : Mathematics
  • Languages : en
  • Pages : 392

This monograph is the first one to systematically present a series of local and global estimates and inequalities for differential forms, in particular the ones that satisfy the A-harmonic equations. The presentation focuses on the Hardy-Littlewood, Poincare, Cacciooli, imbedded and reverse Holder inequalities. Integral estimates for operators, such as homotopy operator, the Laplace-Beltrami operator, and the gradient operator are discussed next. Additionally, some related topics such as BMO inequalities, Lipschitz classes, Orlicz spaces and inequalities in Carnot groups are discussed in the concluding chapter. An abundance of bibliographical references and historical material supplement the text throughout. This rigorous presentation requires a familiarity with topics such as differential forms, topology and Sobolev space theory. It will serve as an invaluable reference for researchers, instructors and graduate students in analysis and partial differential equations and could be used as additional material for specific courses in these fields.


Differential Geometry

Differential Geometry

PDF Differential Geometry Download

  • Author: Loring W. Tu
  • Publisher: Springer
  • ISBN: 3319550845
  • Category : Mathematics
  • Languages : en
  • Pages : 358

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.