A Mathematical Introduction to Logic

A Mathematical Introduction to Logic

PDF A Mathematical Introduction to Logic Download

  • Author: Herbert B. Enderton
  • Publisher: Elsevier
  • ISBN: 0080496466
  • Category : Computers
  • Languages : en
  • Pages : 330

A Mathematical Introduction to Logic


A Mathematical Introduction to Logic

A Mathematical Introduction to Logic

PDF A Mathematical Introduction to Logic Download

  • Author: Herbert B. Enderton
  • Publisher: Elsevier
  • ISBN: 0080570380
  • Category : Mathematics
  • Languages : en
  • Pages : 310

This book gives a mathematical treatment of the basic ideas and results of logic. It is intended to serve as a textbook for an introductory mathematics course in logic at the junior-senior level. The objectives are to present the important concepts and theorems of logic and to explain their significance and their relationship to the reader's other mathematical work.


An Introduction to Mathematical Logic

An Introduction to Mathematical Logic

PDF An Introduction to Mathematical Logic Download

  • Author: Richard E. Hodel
  • Publisher: Courier Corporation
  • ISBN: 0486497852
  • Category : Mathematics
  • Languages : en
  • Pages : 514

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.


A Friendly Introduction to Mathematical Logic

A Friendly Introduction to Mathematical Logic

PDF A Friendly Introduction to Mathematical Logic Download

  • Author: Christopher C. Leary
  • Publisher: Lulu.com
  • ISBN: 1942341075
  • Category : Computers
  • Languages : en
  • Pages : 382

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.


Introduction to Mathematical Logic

Introduction to Mathematical Logic

PDF Introduction to Mathematical Logic Download

  • Author: Elliot Mendelsohn
  • Publisher: Springer Science & Business Media
  • ISBN: 1461572886
  • Category : Science
  • Languages : en
  • Pages : 351

This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.


An Algebraic Introduction to Mathematical Logic

An Algebraic Introduction to Mathematical Logic

PDF An Algebraic Introduction to Mathematical Logic Download

  • Author: D.W. Barnes
  • Publisher: Springer Science & Business Media
  • ISBN: 1475744897
  • Category : Mathematics
  • Languages : en
  • Pages : 129

This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a substantial course on abstract algebra. Consequently, our treatment of the subject is algebraic. Although we assume a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of the exercises. We also assume a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model of logic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based--rather, any conclusions to be drawn about the foundations of mathematics come only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.


Elements of Set Theory

Elements of Set Theory

PDF Elements of Set Theory Download

  • Author: Herbert B. Enderton
  • Publisher: Academic Press
  • ISBN: 0080570429
  • Category : Mathematics
  • Languages : en
  • Pages : 294

This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.


Mathematical Logic

Mathematical Logic

PDF Mathematical Logic Download

  • Author: H.-D. Ebbinghaus
  • Publisher: Springer Science & Business Media
  • ISBN: 1475723555
  • Category : Mathematics
  • Languages : en
  • Pages : 290

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.


Modern Mathematical Logic

Modern Mathematical Logic

PDF Modern Mathematical Logic Download

  • Author: Joseph Mileti
  • Publisher: Cambridge University Press
  • ISBN: 1108833144
  • Category : Mathematics
  • Languages : en
  • Pages : 517

This textbook gives a comprehensive and modern introduction to mathematical logic at the upper-undergraduate and beginning graduate level.


Introduction to Elementary Mathematical Logic

Introduction to Elementary Mathematical Logic

PDF Introduction to Elementary Mathematical Logic Download

  • Author: Abram Aronovich Stolyar
  • Publisher: Courier Corporation
  • ISBN: 0486645614
  • Category : Mathematics
  • Languages : en
  • Pages : 229

This lucid, non-intimidating presentation by a Russian scholar explores propositional logic, propositional calculus, and predicate logic. Topics include computer science and systems analysis, linguistics, and problems in the foundations of mathematics. Accessible to high school students, it also constitutes a valuable review of fundamentals for professionals. 1970 edition.