Mathematics for Neuroscientists

Mathematics for Neuroscientists

PDF Mathematics for Neuroscientists Download

  • Author: Fabrizio Gabbiani
  • Publisher: Academic Press
  • ISBN: 0128019069
  • Category : Mathematics
  • Languages : en
  • Pages : 630

Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. - Fully revised material and corrected text - Additional chapters on extracellular potentials, motion detection and neurovascular coupling - Revised selection of exercises with solutions - More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts


Signal Processing for Neuroscientists

Signal Processing for Neuroscientists

PDF Signal Processing for Neuroscientists Download

  • Author: Wim van Drongelen
  • Publisher: Elsevier
  • ISBN: 008046775X
  • Category : Science
  • Languages : en
  • Pages : 319

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670


Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience

PDF Mathematical Foundations of Neuroscience Download

  • Author: G. Bard Ermentrout
  • Publisher: Springer Science & Business Media
  • ISBN: 0387877088
  • Category : Mathematics
  • Languages : en
  • Pages : 434

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.


MATLAB for Neuroscientists

MATLAB for Neuroscientists

PDF MATLAB for Neuroscientists Download

  • Author: Pascal Wallisch
  • Publisher: Academic Press
  • ISBN: 0123838371
  • Category : Psychology
  • Languages : en
  • Pages : 571

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. - The first complete volume on MATLAB focusing on neuroscience and psychology applications - Problem-based approach with many examples from neuroscience and cognitive psychology using real data - Illustrated in full color throughout - Careful tutorial approach, by authors who are award-winning educators with strong teaching experience


Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience

PDF Dynamical Systems in Neuroscience Download

  • Author: Eugene M. Izhikevich
  • Publisher: MIT Press
  • ISBN: 0262514206
  • Category : Medical
  • Languages : en
  • Pages : 459

Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.


Mathematical and Theoretical Neuroscience

Mathematical and Theoretical Neuroscience

PDF Mathematical and Theoretical Neuroscience Download

  • Author: Giovanni Naldi
  • Publisher: Springer
  • ISBN: 3319682970
  • Category : Mathematics
  • Languages : en
  • Pages : 255

This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.


Statistical Techniques for Neuroscientists

Statistical Techniques for Neuroscientists

PDF Statistical Techniques for Neuroscientists Download

  • Author: Young K. Truong
  • Publisher: CRC Press
  • ISBN: 1315356759
  • Category : Mathematics
  • Languages : en
  • Pages : 349

Statistical Techniques for Neuroscientists introduces new and useful methods for data analysis involving simultaneous recording of neuron or large cluster (brain region) neuron activity. The statistical estimation and tests of hypotheses are based on the likelihood principle derived from stationary point processes and time series. Algorithms and software development are given in each chapter to reproduce the computer simulated results described therein. The book examines current statistical methods for solving emerging problems in neuroscience. These methods have been applied to data involving multichannel neural spike train, spike sorting, blind source separation, functional and effective neural connectivity, spatiotemporal modeling, and multimodal neuroimaging techniques. The author provides an overview of various methods being applied to specific research areas of neuroscience, emphasizing statistical principles and their software. The book includes examples and experimental data so that readers can understand the principles and master the methods. The first part of the book deals with the traditional multivariate time series analysis applied to the context of multichannel spike trains and fMRI using respectively the probability structures or likelihood associated with time-to-fire and discrete Fourier transforms (DFT) of point processes. The second part introduces a relatively new form of statistical spatiotemporal modeling for fMRI and EEG data analysis. In addition to neural scientists and statisticians, anyone wishing to employ intense computing methods to extract important features and information directly from data rather than relying heavily on models built on leading cases such as linear regression or Gaussian processes will find this book extremely helpful.


Computational Neuroscience

Computational Neuroscience

PDF Computational Neuroscience Download

  • Author: Hanspeter A Mallot
  • Publisher: Springer Science & Business Media
  • ISBN: 3319008617
  • Category : Technology & Engineering
  • Languages : en
  • Pages : 142

Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.


Analyzing Neural Time Series Data

Analyzing Neural Time Series Data

PDF Analyzing Neural Time Series Data Download

  • Author: Mike X Cohen
  • Publisher: MIT Press
  • ISBN: 0262019876
  • Category : Psychology
  • Languages : en
  • Pages : 615

A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.


Math for Scientists

Math for Scientists

PDF Math for Scientists Download

  • Author: Natasha Maurits
  • Publisher: Springer
  • ISBN: 3319573543
  • Category : Mathematics
  • Languages : en
  • Pages : 240

This book reviews math topics relevant to non-mathematics students and scientists, but which they may not have seen or studied for a while. These math issues can range from reading mathematical symbols, to using complex numbers, dealing with equations involved in calculating medication equivalents, the General Linear Model (GLM) used in e.g. neuroimaging analysis, finding the minimum of a function, independent component analysis, or filtering approaches. Almost every student or scientist, will at some point run into mathematical formulas or ideas in scientific papers that may be hard to understand, given that formal math education may be some years ago. In this book we will explain the theory behind many of these mathematical ideas and expressions and provide readers with the tools to better understand them. We will revisit high school mathematics and extend and relate this to the mathematics you need to understand the math you may encounter in the course of your research. This book will help you understand the math and formulas in the scientific papers you read. To achieve this goal, each chapter mixes theory with practical pen-and-paper exercises such that you (re)gain experience with solving math problems yourself. Mnemonics will be taught whenever possible. To clarify the math and help readers apply it, each chapter provides real-world and scientific examples.